Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana.

نویسندگان

  • Yoshihisa Kasukabe
  • Lixiong He
  • Kazuyoshi Nada
  • Shuhei Misawa
  • Izumi Ihara
  • Shoji Tachibana
چکیده

Polyamines play pivotal roles in plant defense to environmental stresses. However, stress tolerance of genetically engineered plants for polyamine biosynthesis has been little examined so far. We cloned spermidine synthase cDNA from Cucurbita ficifolia and the gene was introduced to Arabidopsis thaliana under the control of the cauliflower mosaic virus 35S promoter. The transgene was stably integrated and actively transcribed in the transgenic plants. As compared with the wild-type plants, the T2 and T3 transgenic plants exhibited a significant increase in spermidine synthase activity and spermidine content in leaves together with enhanced tolerance to various stresses including chilling, freezing, salinity, hyperosmosis, drought, and paraquat toxicity. During exposure to chilling stress (5 degrees C), the transgenics displayed a remarkable increase in arginine decarboxylase activity and conjugated spermidine contents in leaves compared to the wild type. A cDNA microarray analysis revealed that several genes were more abundantly transcribed in the transgenics than in the wild type under chilling stress. These genes included those for stress-responsive transcription factors such as DREB and stress-protective proteins like rd29A. These results strongly suggest an important role for spermidine as a signaling regulator in stress signaling pathways, leading to build-up of stress tolerance mechanisms in plants under stress conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification and Expression Analysis of Two Arabidopsis LRR-Protein Encoding Genes Responsive to Some Abiotic Stresses

AbstractTwo Arabidopsis thaliana genes, psr9.2 and psr9.4 appearedto be highly similar to a phosphate-starved induced gene,psr9, isolated from Brassica nigra suspension cells.Sequence analysis classified the encoded polypeptides asmembers of leucine-rich repeat (LRR) proteins superfamily.The sequence of psr9 proteins comprise a unique N-terminalregion e...

متن کامل

Differential Expression of Arabidopsis thaliana Acid Phosphatases in Response to Abiotic Stresses

The objective of this research is to identify Arabidopsis thaliana genes encoding acid phosphatases induced by phosphate starvation. Multiple alignments of eukaryotic acid phosphatase amino acid sequences led to the classification of these proteins into four groups including purple acid phosphatases (PAPs). Specific primers were degenerated and designed based on conserved sequences of PAPs isol...

متن کامل

Negative control of Strictisidine synthase like-7 gene on salt stress resistance in Arabidopsis thaliana

Strictosidine synthase-like (SSL) is a group of gene families in the Arabidopsis genome, which whose orthologues in other plants are key enzymes in mono-terpenoid indole-alkaloid biosynthesis pathway. The SSL7 is upregulated upon treatments of Arabidopsis plants with signaling molecules such as SA, methyl jasmonate and ethylene. To find the functional role of the gene, a T-DNA-mediated knockout...

متن کامل

Gene transcriptomic profile in arabidopsis thaliana mediated by radiation-induced bystander effects

Background: The in vivo radiation-induced bystander effects (RIBE) at the developmental, genetic, and epigenetic levels have been well demonstrated using model plant Arabidopsis thaliana (A. thaliana). However, the mechanisms underlying RIBE in plants are not clear, especially lacking a comprehensive knowledge about the genes and biological pathways involved in the RIBE in plants. Materials and...

متن کامل

Microarray analysis of gene expression patterns in Arabidopsis seedlings under trehalose, sucrose and sorbitol treatment

Trehalose is the non-reducing alpha-alpha-1, 1-linked glucose disaccharide. The biosynthesisprecursor of trehalose, trehalose-6-phosphate (T6P), is essential for plant development, growth,carbon utilization and alters photosynthetic capacity but its mode of action is not understood. In thecurrent research, 6 days old seedlings of Arabidopsis thaliana (Columbia ecotype) were grown inliquid cultu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 45 6  شماره 

صفحات  -

تاریخ انتشار 2004